
A contiguity-enhanced k-means clustering algorithm forunsupervised multispectral image segmentationJames Theiler and Galen GislerAstrophysics and Radiation Measurements Group, NIS-2Nonproliferation and International Security Division, MS-D436Los Alamos National Laboratory, Los Alamos, NM 87545 USAABSTRACTThe recent and continuing construction of multi- and hyper-spectral imagers will provide detailed data cubes withinformation in both the spatial and spectral domain. This data shows great promise for remote sensing applicationsranging from environmental and agricultural to national security interests. The reduction of this voluminous data touseful intermediate forms is necessary both for downlinking all those bits and for interpreting them. Smart on-boardhardware is required, as well as sophisticated earth-bound processing.A segmented image (in which the multispectral data in each pixel is classi�ed into one of a small number ofcategories) is one kind of intermediate form which provides some measure of data compression. Traditional imagesegmentation algorithms treat pixels independently and cluster the pixels according only to their spectral information.This neglects the implicit spatial information that is available in the image.We will suggest a simple approach | a variant of the standard k-means algorithm | which uses both spatial andspectral properties of the image. The segmented image has the property that pixels which are spatially contiguousare more likely to be in the same class than are random pairs of pixels. This property naturally comes at some costin terms of the compactness of the clusters in the spectral domain, but we have found that the spatial contiguity andspectral compactness properties are nearly \orthogonal," which means that we can make considerable improvementsin the one with minimal loss in the other.Keywords: algorithm, image segmentation, clustering, k-meansOne might wonder why anyone is interested in such an unpromising problem, and whether or not it iseven possible in principle to learn anything of value from unlabelled samples.| Duda and Hart, Pattern Classi�cation and Scene Analysis, 1973.1. INTRODUCTIONIncreasingly, in remote sensing of the earth and of other planets by orbiting satellites, and in observational astronomy,image data are acquired simultaneously in several distinct spectral bands. For example, Fig. 1 shows two scenesimaged by the Landsat Thematic Mapper in seven spectral bands. The number of spectral bands available on modernsensors is growing, and hyperspectral systems can have hundreds or more. The challenges involved in downlinking,reducing, analyzing, and interpreting such huge datacubes are considerable. Such datasets are rarely \labelled" withinformation about ground (or sky) truth, because such information is expensive to acquire, and di�cult to register.One is led to ask: what can be learned from the unlabelled data?In the context of multispectral imagery, a natural suggestion is to cluster the individual pixels into a small numberof classes, each representing a di�erent spectral type, and then to segment the image into those classes. The idea isthat an image segmented by spectral category can be more informative than the image in any one of the individualspectral bands. This kind of segmentation is often used for preliminary or exploratory data analysis, because itprovides a compression of detail, something that is increasingly important as the raw size of multispectral datacubescontinues to grow. As well as data compression | both informally so that the human can interpret the informationwithout being overwhelmed by it, and more formally so that hardware data storage and bandwidth requirementscan be reduced | there are other motivations for clustering and segmentation of multispectral imagery.Work supported by the U.S. Department of Energy, through the Deployable Adaptive Processing Systems (DAPS) project. Email:fjt,ggislerg@lanl.gov.Proc SPIE 3159, 108{118 (1997) 108



(a) Hatch (b) Grants

Figure 1. Two seven-band 151�151 pixel Landsat images, taken of scenes (a) near Hatch, New Mexico; and (b)near Grants, New Mexico. The spectral bands for the Landsat images are in the visible and infrared: 0.45-0.53�m,0.52-0.60�m, 0.63-0.69�m, 0.76-0.90�m, 1.55-1.75�m, 10.40-12.50�m, and 2.08-2.35�m. The lower resolution at themuch longer wavelength is evident in the sixth channel.� Combined with a small number of labelled samples, a large quantity of unlabelled samples can provide a wayto \tune up" an algorithm for predicting the labels. The idea goes back at least two decades,1{3 but goodpractical algorithms are still being developed.4 Castelli and Cover5 have argued that in the limit of manyunlabelled samples, the labelled samples are \exponentially valuable." This is good news to remote sensors,for it says that a little ground truth can go a long way.� Clustering is also useful for nonstationary data. If the properties of labelled groups (or, of the sensor whichis taking the data) change slowly over time, clustering can be used to follow those changes. Schowengerdt6[pp. 196{202] for instance notes that the segmented images are less sensitive than the raw data to atmosphericconditions.� For remote detection and characterization of gaseous plumes or land-based targets, the ground scene ceasesto be the signal of interest, and becomes instead the clutter. Clustering may provide a way of reducing thisbackground clutter, because the within-class variance of a segmented image can be much smaller than theoverall variance of the image as a whole. The issues of clustering and pixel mixing are somewhat at odds witheach other, but a recent paper by Stocker and Schaum7 points to one approach for combining them.Our interest here is in \partitional" clusterings | these are single partitions of the data into disjoint classes.Hierarchical clusterings provide a \tree" of classes; the data is divided into clusters, those clusters are divided intosubclusters, and so on. Fuzzy clusterings are single partitions of the data, but individual data points can be partialmembers of di�erent classes. 2. SPATIO-SPECTRAL CLUSTERINGStandard cluster algorithms treat the objects they are clustering independently. Applied to multispectral data cubes,these algorithms (and many multispectral analysis methods) treat the pixels as if they were independent. Thisignores spatial aspects, such as texture and contiguity, which for image data can potentially be very informative. IfProc SPIE 3159, 108{118 (1997) 109



one wants to take into account this spatial information, one must either alter the data representation so that eachpixel is extended to include information about its neighbors, or else one must modify the algorithms themselves.If one includes spatial information in the data representation, then one can use the old algorithms. A very general(and very expensive) way to account for the relationships of neighboring pixels is to embed the all the neighboringpixels into components of the pixel of interest. For instance, if we consider a 3 � 3 neighborhood of a 7-channelLandsat image, then the dimension of each enhanced pixel is 3 � 3 � 7 = 63. Standard algorithms can then inprinciple be applied to these 63-dimensional objects, but usually dimension reduction techniques, such as principalcomponents analysis, will be needed to reduce the dimensionality as a preprocessing step. Although this approachis in principal more general, it can in practice be more limiting because the rapid increase in dimensionality withneighborhood size constrains the neighborhood to be small. A more directed approach is to limit the number ofadded components by deciding beforehand what kind of spatial relationships to include. Texture-speci�c features,for instance, can be speci�ed with convolutions of the image with spatial �lters.8On the other hand, it is also possible to modify the algorithms themselves, and continue to work on the datain its original lower-dimensional representation. This is the approach that we take in our \contiguity-enhanced"clustering algorithm because the information we desire from a neighboring pixel (namely, which class it belongs to)is not available from the image data itself.3. OBJECTIVE MEASURES OF CLUSTER QUALITYFormally, a clustering is a partition of a discrete set of objects into a smaller discrete set of classes. A \good"clustering is one where objects in the same class are more or less alike, and objects in di�erent classes are in somesense di�erent. It is important to make a distinction between clustering that seeks to distinguish qualitativelydi�erent types (ash versus birch), even without labelling those types, and clustering that segregrates quantitativefeatures (tall and thin versus short and fat). While the ambitious �rst goal often stands out as a kind of holy grail forclustering algorithms, the more pedestrian second goal can still be quite useful in a number of practical situations.These goals are not mutually exclusive, but they are in our view di�erent. With the �rst goal in mind, oneimplicitly assumes that the data have some underlying multimodal structure; if not, then it is \invalid" to beclustering the data at all. Indeed, Jain and Dubes9 devote an entire chapter of their book to various measures ofcluster validity. When the goal is to identify qualitatively distinct types, then it is also important to determine the\correct" number of such types. Our approach in this paper, however, is more oriented toward the second goal.We seek measures to quantify \how good" a clustering is without attempting to judge whether it is \good enough."And we will generally take the number K of clusters as an input parameter to be speci�ed by the user instead of anoutput value determined by the algorithm. We will only briey comment on reasons for preferring some values of Kover others.3.1. Notation� Let k index the clusters, and� Let K be the total number of clusters.� Let i index the samples (the \pixels" in this case), so that we can� Let xi be the data in the i'th sample. Note that in general, xi is a vector-valued quantity.� Let k(i) denote the cluster to which xi belongs.� Let Ik denote the set of i's which belong to the k'th cluster.� Let nk be the number of elements in Ik; i.e., the number of samples in the k'th cluster, and� Let N =Pk nk be the total number of samples.� Let ck =Pi2Ik xi=nk be the center of the k'th cluster, and� Let c =Pk nkck=N =Pi ck(i)=N be the center of the entire data set.3.2. External and Internal measuresAn external measure of cluster quality compares the clustering obtained using the data xi with external information(such as ground truth). For instance, xi might measure radiance in a number of spectral bands, and the categories ofinterest might be di�erent kinds of land use (urban, desert, cultivated, etc.), di�erent species of dominant vegetation,Proc SPIE 3159, 108{118 (1997) 110



etc. Choosing a good external measure of cluster quality is obviously application-dependent, and in practice boilsdown to comparing the similarity of two clusterings: one from remotely sensed data and one from ground truth.Since the clusters are by de�nition unlabelled, the similarity measure should not depend on such labels | in otherwords, there is no a priori way to \match up" the clusters from the di�erent clusterings. If the number K of clustersis even moderately large, the [K(K � 1)=2]! possible combinations rules out trying them all. We have employed anapproach suggested by by Rand,10 which is O(N2). This is also expensive, but it at least avoids the combinatorialexplosion. Basically, all sample pairs (xi; xj) are considered. For a given sample pair, and for a given clustering, thetwo members of the pair are either in the same cluster or are in di�erent clusters. If the pair members are in thesame cluster for both clusterings, or if the pair members are in di�erent clusters for both clusterings, then a runningsum is incremented. This sum is divided by the total number of sample pairs to produce a measure of similarity thatvaries from 0 to 1, with identical clusterings achieving a similarity of 1.But for remotely sensed data, it is usually di�cult to obtain this kind of external information registered on a pixel-by-pixel basis. Therefore, we ask for internal measures of cluster quality. Jain and Dubes9 speak of these internalmeasures in the context of cluster validity, but we are not really concerned with whether or not our clusterings are\valid" in some absolute sense; instead, we are interested in comparing the relative \value" of clusterings.The �rst and main such measure is the compactness of the individual clusters. One wants items within the samecategory to be as nearly identical as possible. A natural measure of (non)compactness is the average within-clustervariance. For a single cluster, the variance is given byVk = 1nk Xi2Ik(xi � ck)2; (1)and averaging over the K clusters givesV = KXk=1 nkVk=N = NXi=1(xi � ck(i))2=N: (2)It is useful to normalize this value by the overall variance Vo =PNi=1(xi�c)2=N of the data to obtain the normalizedmean squared error: V � = VVo = PNi=1(xi � ck(i))2PNi=1(xi � c)2 : (3)This value varies from zero to one, with smaller values indicating better (i.e., more compact) clusterings.For a �xed number K of clusters, this measure of compactness provides a reasonable, objective, and (more orless) application-independent way to compare the quality of di�erent clusterings. But one can always reduce thewithin-cluster variance by increasing K, all the way to the extreme limit where each sample is its own cluster. Onecan speak of an optimal clustering at a �xed K, but the compactness measure cannot by itself identify an optimal K.A related, but more complicated measure, suggested by Coggins and Jain,8 de�nes the isolation of a singlecluster as the ratio of the distance to the nearest cluster, divided by the the (rms) average radius of the cluster |this is a kind of \number of sigmas" to the nearest cluster:Sk =s minj(cj � ck)2Pi2Ik (xi � ck)2=nk : (4)A large value suggests a compact well-isolated cluster. This measure was used to characterize texture-based imagesegmentations, and the authors reported an empirically determined threshold of 1.70, below which a cluster was notconsidered well-isolated.For clustering that is used in image segmentation, there is also a premium | albeit a secondary one, comparedto compactness | on contiguity. It is generally preferred that adjacent pixels be in the same category. There is animplicit assumption here that what we are looking at on the ground has a spatial decorrelation length that is muchProc SPIE 3159, 108{118 (1997) 111



larger than a pixel's �eld of view. We de�ne the (dis)contiguity at a single pixel as the fraction of its neighbors thatare not in the same class: Di = Number of adjacent pixels j for which k(i) 6= k(j)Number of adjacent pixels : (5)The number of neighboring pixels for a two-dimensional image is either eight or four, depending on whether diagonalneighbors are included. We have found better performance when the diagonal neighbors are used, so our results areall based on eight neighboring pixels. The (dis)contiguity of a cluster is given byDk =Xi2IkDi=nk; (6)and �nally the global measure of (dis)contiguity for the clustering isD = KXk=1 nkDk=N = NXi=1 Di=N: (7)This value D varies from zero to one, with smaller values again indicating better (in this case, more contiguous)clusterings. 4. K-MEANS ALGORITHMThere are several variants of the k-means clustering algorithm, but most variants involve an iterative scheme thatoperates over a �xed number of clusters, while attempting to satisfy the following properties:1. Each class has a center which is the mean position of all the samples in that class.2. Each sample is in the class whose center it is closest to.One usually starts with an initial clustering,11 and then loops through the samples, reassigning each to the clusterwhose center it is closest to, and then recomputes the center locations. The algorithm continues until no more samplesare reassigned. At that point, both properties will be satis�ed, though the obtained clustering is not necessarily (orusually) the only partition of the data that satis�es these two properties.The term k-means is attributed (by Gowda12) to MacQueen,13 whose �rst implementation involved only a singlepass through the data. One of the earliest iterative implementations is attributed (by MacQueen14) to Forgy,15though in that implementation (as well as some more recent ones16), the cluster centers were not recomputed untilafter a full pass through the data. But in fact it is straightforward (and computationally inexpensive) to recomputethe centers each time a point is moved. Speci�cally, upon moving the point xi from cluster j over to cluster k, oneupdates according to: cj  (njcj � xi)=(nj � 1) (8)ck  (nkck + xi)=(nk + 1) (9)nj  nj � 1 (10)nk  nk + 1 (11)Recomputing centers on the y also has the advantage that it prevents the formation of empty clusters.The general e�ect of these moves is to produce more compact clusters. In fact, each time a point is reassigned toa new cluster, the overall (non)compactness measure V , as de�ned by the average within-cluster variance in Eq. (2),is reduced. In general, reassigning a point from the cluster j to cluster k leads to a change�V = nknk + 1(xi � ck)2 � njnj � 1(xi � cj)2: (12)where the variables nk; ck; nj ; and cj correspond to their values before the point is actually moved. Note that thisexpression takes into account the fact that the centers change when a point is moved from one cluster to another.Proc SPIE 3159, 108{118 (1997) 112



Although moving a point to a cluster with a nearer center necessarily decreases V , it is also possible to decreaseV with a move to a cluster whose center (before the move) is not the nearest. If we take as our goal to minimizethe within-cluster variance (instead of the less stringent goal to satisfy the above two criteria), then it makes senseto use �V < 0 as the condition for making a move. Sp�ath17 calls this approach the \exchange" method, and thesimpler rule that moves points to the nearest cluster center the \minimal distance" method. In both cases, everymove reduces the within-cluster variance V , so the algorithm is \greedy" and subject to trapping in local minima;but on the other hand, there is no danger that the algorithm will get into an \in�nite loop" moving the same pointback and forth between clusters.Note that although the computation of V is in general an O(N) process, �V is computed in O(1) time.18 Andalthough the computation of cluster centers from scratch is an O(nk) process, the recomputation after adding ordeleting a point is O(1). Thus, although the k-means algorithm minimizes a global criterion, the computations ateach step are local.Our implementation also included (as an option) a trick suggested by Montolio et al.16 for speeding up thek-means algorithm by setting up a \safe" radius around each cluster center. This radius is half the distance tothe nearest cluster center.19 If a point is within the safe radius, then it should not be moved, and one can avoidcomputing the K distances that are normally required to decide whether or not to move it. This can in principlebe a real time saver, because after the �rst few iterations, most points have settled into their �nal clusters. Wefound that this approach did provide some speedup when the number of clusters K was small, but every time apoint is moved from one cluster to another, two of the cluster centers change, and one has to recompute all of thecluster-cluster distances in order to obtain the new safe radii. On the other hand, if the k-means were implementedso that it recomputed centers only after a full pass through the data, and if the clusters are reasonably well isolated,then considerable speedup should be possible.In our implementation, the number K of clusters is �xed. Much of the e�ort in the development of k-means-styleclustering algorithms has been aimed at discovering good heuristics for choosing this K. The k-means algorithm isoften the \inner loop" of such algorithms for which splitting and merging of clusters are permitted operations aswell as moving samples from cluster to cluster.15,20{22 We remark that many algorithms which adaptively infer theappropriate K from the data still require an input variable which serves essentially the same purpose: a distancethreshold, for instance, or a \vigilance" parameter.234.1. Contig-k-meansAlthough the k-means algorithm was originally designed to minimize the average within-cluster variance of a clus-tering, it is often not di�cult to modify the algorithm so that it optimizes other conditions. This kind of extensionis especially useful if moving a point from one cluster to another leads to a change in the new global criterion whichcan be computed locally in O(1) time.The contig-k-means algorithm is such an algorithm. The idea, an early version of which was briey described inRef. 24, is to minimize a linear combination of (non)compactness and (dis)contiguity. This requires that the userspecify a parameter � to de�ne the relative importance of these two properties. Now, the goal is to minimizeE = �D + (1� �)V �: (13)Since the (dis)contiguity D can be expressed as a sum of (dis)contiguities at each pixel, the e�ect on D of movinga point from cluster j to cluster k is easy to compute. Basically, one computes Di before and after the move; thedi�erence is divided by N and then multiplied by two (to account for the changes in contiguity at neighboring pixels)to produce �D. 5. ILLUSTRATION ON LANDSAT DATAWe used the multispectral Landsat images shown in Fig. 1 to illustrate and compare k-means and contig-k-meansclustering. We speci�ed K = 4 clusters, and for a range of values of the contiguity weight �, applied the contig-k-means iterations until a stable clustering was achieved. Fig. 2 illustrates some of the segmentations that werefound. These segmentations were generated by �rst clustering the data with � = 0, and then using that clusteringas an initial condition for � = 0:1, and so on for increasing �. This was found to produce better clusterings (smallerProc SPIE 3159, 108{118 (1997) 113



values of the criterion in Eq. (13)) than those generated by a �xed � from a random11 starting condition. However,this approach did not work well for large �, where trapping in local minima becomes a real problem. This is mostobvious for the case � = 1, where contiguity is to be optimized with complete disregard for the spectral properties.The optimal clustering here has all pixels in one cluster, giving D = 0 and V � = 1.The most notable feature of contig-k-means clustering is that we can make considerable gains in the contiguityof a clustering with virtually no loss to the compactness (up to a point). This is illustrated in Fig. 3. A simplealternative to contig-k-means for producing contiguity-enhanced clusterings is to spatially smooth the clusterings.Schowengerdt6 [pp. 187{190] describes several approaches for this. Perhaps the simplest, attributed to Goldberg etal.,25 is to do a majority-rule smoothing of the clustering itself. The dashed lines in Fig. 3 illustrate the e�ect ofsuccessive smoothings with a 3� 3 kernel. Again, one trades compactness for contiguity, though one has less controlover how much of each is traded, and in general pays a higher cost in compactness for the same bene�t in contiguitythan one does for the contig-k-means algorithm. On the other hand, the simple smoothing algorithm performedbetter in the large � � 1 regime, generating clusterings with much lower (dis)contiguity, though at the expense ofmuch greater (non)compactness. If one were interested in this regime, further improvements would be possible byusing the smoothed clusterings as initial conditions to the contig-k-means algorithm.6. CLUSTERING AS DATA COMPRESSIONWe have spoken of an image segmentation as a compression of information. We will make that statement morequantitative in this section, and treat the clustering quite literally as a data compression scheme. All the informationin a pixel's multichannel spectrum is collapsed down to a single category label, essentially providing a vector-quantized compression.26,27 From this point of view, it makes sense to monitor the entropy of a clustering. For ageneral partition with fraction pk of samples in the k'th cluster, the ordinary Shannon entropy (in bits) is given byS = �Pk pk log2 pk, or S = log2N � "(1=N) NXi=1 log2 nk(i)# : (14)This describes the average number of bits per pixel required to specify which class each of the pixels is in.Consider an image with d spectral channels, and b bits of precision in each channel. The image will nominallycontain bd bits of information for each pixel.Suppose we cluster the data into K distinct clusters, and for each pixel, instead of storing the full bd bits, storeonly the name of the cluster. If S is the entropy of the clustering, then we'll need an average of S bits per pixel toindicate which cluster a pixel belongs to. This is (lossy) compression of bd� S bits per pixel.If we also store the residual distance from pixel data values to the the cluster center, then we can achieve losslesscompression. Or, if we store appropriately quantized residuals, we can obtain compression with an adjustable degreeof loss. In the lossless case, we write V as the mean within-cluster variance of the clustering, and Vo as the varianceof the full data set, so pVo=V is the average linear compression factor, and d log2pVo=V is the number of fewerbits per pixel in the residual data compared to the original data. Thus we'll need an average of bd � d2 log2(Vo=V )bits to describe the residual distances to the same b bits of precision as in the original image.There will also be bdK bits of overhead for the whole image. In the limit of large image size, however, this willbe negligible. This (lossless) compression scheme will therefore save usB = d2 log2(Vo=V )� S (15)bits per pixel. The two terms in this expression represent a tradeo� between two competing desires. First, we wantto make the average cluster size V as small as possible. Smaller residuals require fewer bits. But we also want tomake the entropy S as small as possible. The solid lines in Fig. 4 show how this expression for B varies with numberK of clusters, using ordinary k-means clustering on the Hatch and Grants data. Increasing K makes for smallerresiduals V , but larger entropy S. The tradeo� favors large K, but the gain at large K is marginal. This suggests acriterion for choosing an appropriate K that makes no assumptions about underlying structure of the data. A literalProc SPIE 3159, 108{118 (1997) 114



(a) Hatch (b) Grants

(c) Hatch, � = 0:5 (d) Grants, � = 0:5

Figure 2. The top panels (a,b) show ordinary k-means clusterings (� = 0) of the Landsat images shown in Fig. 1into K = 4 distinct clusters. The bottom panels (c,d) show contig-k-means clusterings with � = 0:5. The spatialcontiguity is visibly enhanced. For the Hatch image (a,c), the (dis)contiguity measure decreased from 0.22 to 0.12,while the compactness changed by eight percent. The Sk statistic introduced by Coggins and Jain changed from 2.02to 1.94; the Rand similarity statistic for clusterings (a) and (c) was 0.842. The numbers are similar for the Grantsimage (b,d): the (dis)contiguity again almost halved, going from 0.19 to 0.10, and the compactness again changedby only eight percent; the average Sk went from 2.04 to 1.96, and the similarity index was 0.912.
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Figure 3. Plot of (dis)contiguity versus (non)compactness for clusterings generated for the multispectral data shownin Fig. 1: (a) Hatch; (b) Grants. The squares are from the contig-k-means algorithm using values of � ranging from0 (top, leftmost square) to 1.0 in steps of 0.1. Increasing values of � led to clusters with smaller values for the(dis)contiguity and larger values for (non)compactness. For small values of �, we can make considerable gains in thecontiguity with little loss to the compactness. These curves trace out a kind of boundary below and to the left ofwhich we do not expect any clusterings. The dotted lines correspond to smoothings of the � = 0 clustering. The�lled circles correspond to repeated application of a 3�3 kernel, and the open circles correspond to single applicationof kernels of size 3� 3, 5� 5, 7� 7, etc.
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Figure 4. Plot of the number of bits per pixel that a lossless compression scheme would save as a function ofthe number K of clusters, based on (a) the Hatch image, and (b) the Grants image. The solid lines are basedon ordinary k-means clustering with � = 0. The dashed lines were obtained using a modi�cation of k-means thatexplicitly maximizes the expression for bits per pixel of compression in Eq. (15). The dotted lines use contig-k-meanswith � = 0:5.
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